4,855 research outputs found

    The goldstone real-time connected element interferometer

    Get PDF
    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline

    Modelisation of transition and noble metal vicinal surfaces: energetics, vibrations and stability

    Get PDF
    The energetics of transition and noble metal (Rh, Pd, Cu) vicinal surfaces, i.e., surface energy, step energy, kink energy and electronic interactions between steps, is studied at 0K from electronic structure calculations in the tight-binding approximation using a {\it s, p} and {\it d} valence orbital basis set. Then, the surface phonon spectra of copper are investigated in the harmonic approximation with the help of a semi-empirical inter-atomic potential. This allows to derive the contribution of phonons at finite temperatures to the step free energy and to the interactions between steps. The last part is devoted to the stability of vicinal surfaces relative to faceting with special attention to the domain of orientations (100)-(111). Semi-empirical potentials are shown to be not realistic enough to give a reliable answer to this problem. The results derived from electronic structure calculations predict a variety of behaviors and, in particular, a possible faceting into two other vicinal orientations. Finally, temperature effects are discussed. Comparisons are made with other theoretical works and available experiments

    Dynamics of fullerene coalescence

    Full text link
    Fullerene coalescence experimentally found in fullerene-embedded single-wall nanotubes under electron-beam irradiation or heat treatment is simulated by minimizing the classical action for many atom systems. The dynamical trajectory for forming a (5,5) C120_{120} nanocapsule from two C60_{60} fullerene molecules consists of thermal motions around potential basins and ten successive Stone-Wales-type bond rotations after the initial cage-opening process for which energy cost is about 8 eV. Dynamical paths for forming large-diameter nanocapsules with (10,0), (6,6), and (12,0) chiral indexes have more bond rotations than 25 with the transition barriers in a range of 10--12 eV.Comment: 4 pages, 2 figures, 1 supplementary movie at http://dielc.kaist.ac.kr/yonghyun/coal.mpeg. To be published in Physical Review Letter

    Atomistic Simulations of Nanotube Fracture

    Full text link
    The fracture of carbon nanotubes is studied by atomistic simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The rangle of fracture strians compares well with experimental results, but predicted range of fracture stresses is marketly higher than observed. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. The results show moderate dependence of fracture strength on chirality.Comment: 12 pages, PDF, submitted to Phy. Rev.

    Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion

    Full text link
    To study the shape formation process of carbon nanotubes, a string equation describing the possible existing shapes of the axis-curve of multishell carbon tubes (MCTs) is obtained in the continuum limit by minimizing the shape energy, that is the difference between the MCT energy and the energy of the carbonaceous mesophase (CM). It is shown that there exists a threshold relation of the outmost and inmost radii, that gives a parameter regime in which a straight MCT will be bent or twisted. Among the deformed shapes, the regular coiled MCTs are shown being one of the solutions of the string equation. In particular,the optimal ratio of pitch pp and radius r0r_0 for such a coil is found to be equal to 2π2\pi , which is in good agreement with recent observation of coil formation in MCTs by Zhang et al.Comment: RevTeX, no figure, 12 pages, to appear in Phys. Rev. Let

    Effects of finite curvature on soliton dynamics in a chain of nonlinear oscillators

    Full text link
    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a number of qualitative effects. In particular, the energy of nonlinear localized excitations centered on the bending decreases when curvature increases, i.e. bending manifests itself as a trap for excitations. Moreover, the potential of this trap is double-well, thus leading to a symmetry breaking phenomenon: a symmetric stationary state may become unstable and transform into an energetically favorable asymmetric stationary state. The essentials of symmetry breaking are examined analytically for a simplified model. We also demonstrate a threshold character of the scattering process, i.e. transmission, trapping, or reflection of the moving nonlinear excitation passing through the bending.Comment: 13 pages (LaTeX) with 10 figures (EPS

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    Chromospheric polarimetry through multi-line observations of the 850 nm spectral region III: Chromospheric jets driven by twisted magnetic fields

    Full text link
    We investigate the diagnostic potential of the spectral lines at 850 nm for understanding the magnetism of the lower atmosphere. For that purpose, we use a newly developed 3D simulation of a chromospheric jet to check the sensitivity of the spectral lines to this phenomenon as well as our ability to infer the atmospheric information through spectropolarimetric inversions of noisy synthetic data. We start comparing the benefits of inverting the entire spectrum at 850 nm versus only the Ca II 8542 A spectral line. We found a better match of the input atmosphere for the former case, mainly at lower heights. However, the results at higher layers were not accurate. After several tests, we determined that we need to weight more the chromospheric lines than the photospheric ones in the computation of the goodness of the fit. The new inversion configuration allows us to obtain better fits and consequently more accurate physical parameters. Therefore, to extract the most from multi-line inversions, a proper set of weights needs to be estimated. Besides that, we conclude again that the lines at 850 nm, or a similar arrangement with Ca II 8542 A plus Zeeman sensitive photospheric lines, poses the best observing configuration for examining the thermal and magnetic properties of the lower solar atmosphere.Comment: 14 pages, 11 figure

    On the Dynamical Ferromagnetic, Quantum Hall, and Relativistic Effects on the Carbon Nanotubes Nucleation and Growth Mechanism

    Full text link
    The mechanism of carbon nanotube (CNT) nucleation and growth has been a mystery for over 15 years. Prior models have attempted the extension of older classical transport mechanisms. In July 2000, a more detailed and accurate nonclassical, relativistic mechanism was formulated considering the detailed dynamics of the electronics of spin and orbital rehybridization between the carbon and catalyst via novel mesoscopic phenomena and quantum dynamics. Ferromagnetic carbon was demonstrated. Here, quantum (Hall) effects and relativistic effects of intense many body spin-orbital interactions for novel orbital rehybridization dynamics (Little Effect) are proposed in this new dynamical magnetic mechanism. This dynamic ferromagnetic mechanism is proven by imposing dynamic and static magnetic fields during CNT syntheses and observing the different influence of these external magnetic environments on the catalyzing spin currents and spin waves and the resulting CNT formation

    Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential

    Get PDF
    We investigate the possibility to trap ultracold atoms near the outside of a metallic carbon nanotube (CN) which we imagine to use as a miniaturized current-carrying wire. We calculate atomic spin flip lifetimes and compare the strength of the Casimir-Polder potential with the magnetic trapping potential. Our analysis indicates that the Casimir-Polder force is the dominant loss mechanism and we compute the minimum distance to the carbon nanotube at which an atom can be trapped.Comment: 8 pages, 3 figure
    corecore